Digestion Index Glossary

Control of Pancreatic Exocrine Secretion

As you might expect, secretion from the exocrine pancreas is regulated by both neural and endocrine controls. During interdigestive periods, very little secretion takes place, but as food enters the stomach and, a little later, chyme flows into the small intestine, pancreatic secretion is strongly stimulated.

Like the stomach, the pancreas is innervated by the vagus nerve, which applies a low level stimulus to secretion in response to anticipation of a meal. However, the most important stimuli for pancreatic secretion comes from three hormones secreted by the enteric endocrine system:

  • Cholecystokinin: This hormone is synthesized and secreted by enteric endocrine cells located in the duodenum. Its secretion is strongly stimulated by the presence of partially digested proteins and fats in the small intestine. As chyme floods into the small intestine, cholecystokinin is released into blood and binds to receptors on pancreatic acinar cells, ordering them to secrete large quantities of digestive enzymes.
  • Secretin: This hormone is also a product of endocrinocytes located in the epithelium of the proximal small intestine. Secretin is secreted (!) in response to acid in the duodenum, which of course occurs when acid-laden chyme from the stomach flows through the pylorus. The predominant effect of secretin on the pancreas is to stimulate duct cells to secrete water and bicarbonate. As soon as this occurs, the enyzmes secreted by the acinar cells are flushed out of the pancreas, through the pancreatic duct into the duodenum.
  • Gastrin: This hormone, which is very similar to cholecystokinin, is secreted in large amounts by the stomach in response to gastric distention and irritation. In addition to stimulating acid secretion by the parietal cell, gastrin stimulates pancreatic acinar cells to secrete digestive enzymes.

Stop and think about this for a minute - control of pancreatic secretion makes perfect sense. Pancreatic secretions contain enzymes which are needed to digest proteins, starch and triglyceride. When these substances enter stomach, and especially the small intestine, they stimulate release of gastrin and cholecystokinin, which in turn stimulate secretion of the enzymes of destruction.

Pancreatic secretions are also the major mechanism for neutralizing gastric acid in the small intestine. When acid enters the small gut, it stimulates secretin to be released, and the effect of this hormone is to stimulate secretion of lots of bicarbonate. As proteins and fats are digested and absorbed, and acid is neutralized, the stimuli for cholecystokinin and secretin secretion disappear and pancreatic secretion falls off.

The Pancreas: Introduction and Index
Exocrine Secretions of the Pancreas Introduction and Index

Last updated on October 22, 1995
Author: R. Bowen
Send comments via form or email to rbowen@colostate.edu